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ABSTRACT 

As spatial data becomes a central component in a variety of applications, the demand for up-to-date data is on 
the rise. In order to shorten the updating cycle time local updating is preferred, in which patches of up-to-date 
data must be incorporated into the existing data set. Although this can be done by using a global transformation 
model or a rubber-sheeting scheme, it is argued that in the case of patch-based updating the accuracy relations 
and its spatial variations must be considered. This requires adopting a field model for the various distortions in 
the data sets, as well as the implementation of proper computational tools. It is suggested that collocation can 
not only be used as such a tool, but that it may also encompass additional advantages, such as the ability to 
estimate the distortions in one data set based on the distortions in another data set. An example to the field 
model and the estimation of unknown signals in a data set are also presented. 

 

1. INTRODUCTION 

 

The demand for up-to-date spatial data has long been self-evident. Nowadays, As up-to-date spatial data are 
becoming a fundamental component in a variety of engineering, analysis and management operations and as this 
data is becoming readily available to a growing community of users, the requirement for up-to-date data is on 
the rise. In order to facilitate this requirement an updating process is employed. This process can be carried out 
either on a global scale, where the entire data set is replaced by a new up-to-date data, or on a local scale, where 
distinct areas in the existing data set are updated. Due to various drawbacks of the global scale updating process, 
such as its long duration and the considerable resources required for its implementation, a local updating 
process, during which only patches in the existing data are updated, is frequently preferred. 

Both the global and the local updating schemes share several fundamental processing steps that are required for 
their success. These steps usually include extracting up-to-date data, detecting and classifying changes, and 
finally, incorporating the up-to-date data with the existing data. Up-to-date data extraction usually consists of 
processing up-to-date aerial photographs or a re-mapping of the interest area using a variety of surveying 
methods. Change detection and classification, which is at the heart of the updating process, consist of a 
comparison between the up-to-date and the existing data, resulting in a designation of areas or objects that were 
affected by change. The final step of incorporating the up-to-date data with the existing data usually consists of 
transforming the up-to-date into the existing data set using a variety of transformations. Most of the research 
effort in recent years was dedicated to the first two steps of the updating process, yet little attention was given 
so far to the problem of incorporating the existing data set and the up-to-date data (in the case of a local 
updating process, this includes incorporating several patches of up-to-date data).  

The data incorporation problem is commonly solved by employing various geometric transformations. These 
transformations are realized by mathematical models with various degrees of freedom, ranging from a rigid-
body transformation with three degrees of freedom up to an affine transformation with six degrees of freedom, 
or a projective transformation with eight degrees of freedom (Fagan and Soehngen, 1987). The transformation 
process begins with the measurement of homologous points in both data sets. If redundant points were identified 
the transformation parameters may then be estimated using the well known least squares adjustment technique, 
during which weights may be assigned to each measurement (Greenfeld, 1997a) ; (Greenfeld, 1997b). In the case 
of control points weights may be assigned by the rank of each point in the control network hierarchy (Greenfeld, 
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1997b). In case of a non uniform homologous point distribution a modified least squares scheme is required in 
order to eliminate the effect of leverage points (Kampmann, 1996). Additionally, various constraints may also 
be incorporated in order to maintain the consistency of the existing data. 

Although a geometric transformation may bring both data sets into the same datum (thus eliminating the 
systematic effect), discrepancies between the overlapping area of the patch and the existing data are still likely 
to occur. This type of difficulty is also encountered during the vectorization process of scanned map sheets 
(Doytsher and Gelbman, 1995). In this process each map sheet is treated separately by vectorizing the required 
data in the map followed by a transformation (usually an affine transformation) of the resulting vector data 
using the state-plane coordinate grid that was overlaid in the map sheet. When several map sheets with 
overlapping boundaries are aggregated, discrepancies in the overlapping area still exist. This is caused by the 
inability of the affine transformation to account for the random part of the discrepancies between the two data 
sets. Although proper averaging of the overlapping vector data may eliminate the discrepancies, it may also 
introduce distortions in the vector data and by that violate the relationships between data elements (fixed length 
or angle, parallelism, perpendicularity, etc.) (Doytsher and Gelbman, 1995). Consequently, in order to account 
for the resulting random distortions a rubber-sheeting process is employed. During this process the distortions 
are spread linearly toward the center of the map sheet, where linearity is assumed along the boundary of the map 
as well as perpendicular to it (Doytsher, 2000). Doytsher (2000) also suggested a rubber-sheeting algorithm for 
non-rectangular map regions. 

For patch-based updating purposes similar techniques may be employed. Although it may be assumed that both 
data sets share the same datum discrepancies are still likely to be found due to various factors such as the use of 
different datum points and the employment of different surveying techniques. These discrepancies, which 
contain systematic and random parts, can be eliminated using a proper transformation that accounts for the 
systematic part, followed by a rubber-sheeting that accounts for the random part of the discrepancies. Yet, by 
doing so several concerns should be noted: 

 In the case of map sheets the purpose of the transformation is to bring each map sheet to the state-plane 
coordinate system. This is done by using the overlaid grid intersections in each map while assuming 
that the position of each intersection is errorless. Thus, each map is transformed separately based on 
pre-defined control points. This is not the case for an up-to-date data patch, where the purpose of the 
transformation is now to resolve the systematic part of the discrepancies between the information about 
the same datum as it is manifested in each data set.  As this is done with homologous points from both 
sets it can not be assumed that one data set is errorless, and proper weight should be assigned 
according to the accuracy of each data set.  

 For map sheets, the discrepancies that remain after the transformation are resolved by averaging. As it 
may be assumed that there is no extensive change in the accuracy of the data for the same map series, 
and therefore averaging the position of homologous points after the elimination of the systematic part 
of the discrepancies is permissible (in case of different map scales proper weights may be assigned). It 
may be argued that the same practice can be employed for a patch of up-to-date data that is to be 
incorporated into the existing data set. After proper transformation discrepancies are still likely to 
occur and they may be resolved by applying averaging and a rubber-sheeting process. Yet, averaging 
(and weight assignment) is not straightforward in this case since it is not clear whether both data sets 
share the same accuracy characteristics. 

 During the rubber-sheeting process the distortions are spread linearly, as was described earlier. This 
can be justified by the assumption that the change in the distortions is linear throughout the data set. 
Yet due to surveying practices, map compilation techniques, and map sheet handling this may not be 
the case. Consequently, the distortions may not be uniform and may vary throughout the patch. 

These concerns raise two fundamental questions that should be addressed prior to the incorporation of the up-to-
date information, namely the accuracy relations between the data sets and the spatial variation of accuracy 
throughout the data set. In order to resolve these questions the sources as well as the behavior of the errors in a 
data set should be described. These will be discussed in the following section. 

 

 

 



2. ERROR SOURCES AND THEIR SPATIAL “BEHAVIOR”  

 

The sources of spatial data can vary from field surveying and photogrammetric techniques to digitizing existing 
map sheets. Following the work of Thapa and Burtch (1990), one may classify these sources into two different 
categories, namely primary sources and secondary sources. This classification is based on a differentiation 
between collection methods that use raw field measurement data, such as various surveying and 
photogrammetric techniques, and collection methods that rely on compiled measurements, such as digitized or 
scanned map sheets. 

Each of these data sources can be characterized by a set of factors that contribute to the final accuracy of the 
data set. Primary methods are characterized by three major types of errors: personal errors; instrumental errors; 
and environmental errors, whereas secondary methods can be characterized by various error sources such as 
scanning or digitizing errors; compilation error; generalization error; and map material deformation errors 
(Thapa and Bossler, 1992). Additional detailed description of the error sources may be found in (Hunter and 
Beard, 1992); (Maffini et al. 1989). It should be noted that the error sources are associated with the accuracy of 
the data set as well as its quality, but while the accuracy is a statistical characteristic of the data set the quality of 
the data set depend on the context of use (Hunter and Beard, 1992). Additionally, the term accuracy and error 
can be related to several aspects of the data. Usually these aspects are classified into positional, attributive, 
topological, and temporal aspects (Shi, 1998). In the scope of this paper the terms accuracy and error are related 
only to the positional accuracy of the data. 

As the accuracy of the spatial data and its products is of great importance to its providers as well as to its end 
users, considerable research effort was dedicated to the study of errors and error propagation in spatial data. In 
the context of vector data, a substantial part of this effort was dedicated to the modeling of errors for vector data 
entities such as points and lines (for example the work of Easa (1995); Stanfel and Stanfel (1993); Stanfel 
(1999)) and to the modeling of errors of spatial operators such as overlay operations (for example the work of 
Chrisman (1989); Veregin (1990); Leung and Yan (1998)).  

Although the error sources can be identified and even modeled in some cases, usually the magnitude and 
particular behavior of each error source cannot be specified for an existing data set (Ehlschlaeger and 
Goodchild, 1994). Even if accuracy information exists for a specific data set, it is usually vague or given in 
general terms. Consequently, the errors must be assessed in other ways, which are usually empirical or designed 
for a specific context (Ragia and Winter, 2000). This is usually done by utilizing a reference data set in the form 
of a ground-truth data set or another data set. Once such a reference is obtained, deviations of the examined data 
set from the reference data set can be found, and its validity can be verified using various statistical tools, such 
as the ANOVA tool. If several data sets covering the same area are available, the deviation values between data 
elements may also serve as an assessment tool (Ragia and Winter, 2000).  

The error models described fall short of providing a sufficient solution to the problem of spatial error modeling 
for two primary reasons. The first is related to the inability of these models to support complex spatial objects 
such as topographic databases (Goodchild et al. 1992). The second reason is related to the inability of the 
models to take into account the spatial autocorrelation of the various error sources (Ehlschlaeger and Goodchild, 
1994). This led to the development of a more generic error model in the form of an error field or a distortion 
field, which is a continuous description of the spatial variation of the error. Examples to such models may be 
found in the work of Goodchild at al. (1992), Ehlschlaeger and Goodchild (1994), Hunter and Goodchild 
(1996), and Church et al. (1998).  

Using a field model, the errors or distortions may also be described as signals. The signals are generated by the 
various error sources, where each source may be characterized by its own magnitude and spatial behavior. The 
final signal at each point in the field is the sum of all signals present, thus in a given point the signals represent 
an “overall” error. An example to such signals may be seen when comparing a vector data set of roads with an 
aerial image covering the same area. The signal sources in this case are the exterior orientation parameters of 
the image, the projective geometry of the camera, and the topography of the area (relief displacement).  

An example that illustrates this is given in figure 1. To demonstrate the nature of the signals a hilly build-up 
area was selected. An aerial image of the area (Fig. 1a) was rectified to fit a vector data set of roads (Fig. 1b) by 
a four-parameter Helmert transformation (two translations, a rotation and an overall scale factor). The 
transformation parameters were estimated using a set of eight conjugate points (marked by the crosses in Fig. 
1a). This was followed by a manual digitizing of the location differences (residuals) between the roads in the  



 

 

 

 
 

(a) 

 

(b) 

 

  

 

B A

 

B A

(c) 

 

(d) 

 

Figure 1: An example to signals in an aerial image – (a) the original image (the crosses mark 
the location of the points used for rectifying the image); (b) The corresponding data 
form a roads layer; (c) The signal that was measured; (d) a DTM covering the aerial 
image area.  

 



vector data and the rectified image (Fig 1c). Since the points used for the rectification were on high grounds, the 
image was rectified to fit these areas. A comparison between the magnitude and direction of the signal and the 
topography of the area shows this – while the signal on high grounds is relatively low (area A in Fig. 1c, Fig. 
1d), it becomes higher when moving to lower grounds (area B in Fig. 1c, Fig. 1d). It is also important to note 
that near signals are correlated to each other as can be seen from their magnitude and direction, but for distant 
signals this correlation is low. Thus, the spatial correlation of the signals is apparent. 

 

3. INCORPORATING THE SIGNALS INTO THE TRANSFORMATION MODEL 

 

One of the means to take into consideration the existence and the statistical nature of signals is the employment 
of the Collocation technique. Given a set of observations ( l ) and a parametric model ( A ) with unknowns ( x ), 
in this technique the residuals obtained from the classical least squares model are decomposed into a set of 
signal components ( ) and a set of random components ( n ) (Moritz, 1972): s

nsAxl  . (1) 

A least-squares solution to eq. (1) is given by (Moritz, 1972) ; (Cross, 1983): 
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Where and are the variance-covariance matrices for the signal and the noise respectively.  sC nC

Implementing collocation requires knowledge of the parametric model as well as the variance-covariance 
matrices. The parametric model is usually in the form of a geometric transformation, wherein the degrees of 
freedom are chosen according to prior knowledge. if such knowledge is not available a Helmert transformation 
is always permissible as a starting point (Buiten 1978). The covariance matrices can be estimated in some cases 
based on the properties of the problem at hand, but in most cases they are estimated empirically from the data at 
hand (Mikhail, 1976). A model for describing the covariance function C between two points, which is 
frequently used for transformation problems as well as photogrammetric applications is given by the Gaussian 
model (Mikhail, 1976):  

2
2

1
dkekC  , (3) 

Where d is the distance between the points, and k1,k2 are constants. It should be emphasized that the covariance 
matrices, which describe the spatial dependency of the signal or noise values between two points, are at the core 
of the collocation technique. As these matrices describe the statistical “behavior” of the signals and the noise, 
they provide the means of incorporating this information into the adjustment model (Deakin et al., 1994).  

In view of the concerns discussed in sections 1 and 2, an analysis of the collocation technique in the context of 
patch-based updating indicates a few potential advantages over other transformation techniques: 

 The statistical nature and the spatial dependency of the distortions is accounted for in the collocation 
solution via the covariance matrix. Hence, linearity is not assumed and the value of the signal 
(distortion) at each point can be estimated. 

 Using the collocation technique, it is possible to estimate the value of the signal where no conjugate 
points exist. This is an advantage for an updating process since it enables estimating the signal in 
points that does not exist in the current data set. 

 When transforming data set A with signals sB to data set B with signals sA the resulting signal 
Tŝ estimated by the collocation is the sum of the signals in each data set (Buiten, 1978): 

BAT sss ˆ . (4) 
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Figure 2: Recovering an unknown signal of a data set by collocation: (a) the original grid; (b) 
the covariance function for the signal in x  direction; (c) grid A (circles mark 
points used for the computation); (d) grid B (circles mark points used for the 
computation); (e) grid B transformed to grid A with an estimation of the total 
signal (marked by arrows);  (f) the transformed grid B after applying the total 
signal; (g) the recovered signal for grid B; (g) the original signal that was applied to 
grid B. 



 
Although the last potential advantage can be considered a shortcoming of collocation in some cases, it could 
hold an important advantage in the case of updating. In view of the fact that for an existing data set the signals 
sB  are usually unknown, this provides the means to estimate sB provided the signals sA in the up-to date data can 
be estimated (this may be assumed as the up-to-date data is the product of a recent data acquisition and 
processing). If both signals are recovered, they can be then used to estimate the positional accuracy of each data 
set. 

An example of this last capability can be seen in Fig. 2. In a simulation, a grid of 13 by 13 points (Fig. 2a) was 
distorted by an artificial two-dimensional signal function. An example of the covariance function for the signal 
in x direction can be seen in Fig. 2b (estimated by the model described in eq. 3). The signal was applied twice to 
the grid with different parameters, resulting in two different distorted grids – grid A (Fig. 2c) and grid B, which 
was also transformed by a rigid body transformation (Fig. 2d). No random errors were introduced.  

In this example it was assumed that the signal for grid A is known and an attempt to recover the signal for grid 
B was made. Using collocation, grid B was transformed to grid A using a rigid body transformation model. 
Only 80 of the grid points (the circled grid points in Fig. 2c and Fig 2d) were used for the computation of the 
transformation parameters and the signals. The transformed grid B and the estimated total signal (marked at 
each grid point) can be seen in Fig. 2e. The total signal was then applied to grid B resulting in a grid similar to 
grid A (Fig. 2f, for comparison see Fig. 2c). As it was assumed that sA is known, it was possible to recover sB  
(Fig. 2g). For a qualitative assessment of the results, this can be compared to the original signal that was applied 
to grid B (Fig. 2h).  

 

4. CONCLUDING REMARKS 

 

The concepts described in this paper are the basis of an on-going research toward the formulation of a tool 
aimed to facilitate an optimal fusion of the existing and the up-to-date spatial data sets. As the basis for such a 
fusion is the accuracy relations between data sets, such a tool must provide the ability to establish these relations 
even if there is little information regarding the accuracy of one of the data sources. Furthermore, as spatial data 
may not have homogenous accuracy this tool should be able to take into account the spatial variations of the 
accuracy using a proper error model.  

For this purpose, an attempt to analyze collocation as a possible tool was made. It was shown that if the signal 
on one data set is known, it is possible to estimate the signal in another data set, for which the signal is 
unknown, thus providing the means to estimate the quality relations as well as to account for the spatial 
variation of the error. Implementing this tool for updating purposes requires future work, mainly in the 
development of proper estimation scheme for covariance matrices, and in the incorporation of such a tool into a 
patch-based updating process.   

 

ACKNOWLEDGEMENTS 

The authors would like to thank the Survey of Israel for providing the aerial images and the corresponding 
vector data sets that were used in this work. 

 

REFERENCES 
Buiten, H. J., 1978. “Junction of nets by collocation”. Manuscripta Geodetica, Vol. 3, pp. 253-297. 
Chrisman, N. R., 1989. “Modeling error in overlaid categorical maps”. “Accuracy of spatial databases”, 

(Michael Goodchild and Sucharita Gopal, Eds.), Taylor & Francis, 290 pages, pp. 21-34. 
Church, R., Curtin, K., Fohl, P., Funk, C., Goodchild, M. F., 1998. “Positional distortions in geographic data 

sets as a barrier to interoperation”.  ACSM annual convention, pp. 377-387. 
Cross, P. A., 1983. “Advanced least-squares applied to position fixing”. Working paper No. 6,  North east 

London Polytechnic, Department of  Land Surveying, 205 pages. 
Deakin, R. E., Collier, P. A., Leahy F. J., 1994. “Transformations of coordinates using least squares 

collocation”. The Australian Surveyor, March 1994, pp. 6-20. 



Doytsher, Y. 2000. “A rubber sheeting algorithm for non-rectangular maps”. Computers & Geosciences, 26 
(2000), pp. 1001-1010. 

Doytsher, Y., Gelbman, E., 1995. “Rubber sheeting algorithm for cadastral maps”. Journal of Surveying 
Engineering, November 1995, pp. 155-162. 

Easa, S., 1995. “Estimating line segment reliability using Monte Carlo simulation”. Surveying and Land 
Information Systems, Vol. 55 (3), pp. 136-141. 

Ehlschlaeger, C. R., Goodchild, M. F., 1994. “Uncertainty in spatial data: defining, visualizing, and 
managing data errors”. Proceedings of LIS/GIS ’94 annual conference, pp. 246-253. 

Fagan, G. L., Soehngen, H. F., 1987. “Improvement of GBF/DIME file coordinates in a geobased 
information system by various transformation methods and “rubbersheeting” based triangulation”. 
Proceedings of Auto-Carto 8, eighth international symposium on computer-assisted cartography, pp. 481-
491. 

Goodchild, M. F., Guoqing, S., Shiren, Y., 1992. “Development and test of an error model for categorical 
data”. Int. J. Geographic Information Systems, Vol. 6 (2), pp. 87-104. 

Greenfeld, J. 1997a. “Consistent property line analysis for land surveying and GIS/LIS”. Surveying and Land 
Information systems, Vol. 57 (2), pp. 69-78. 

Greenfeld, J. 1997b. “Least squares weighted coordinate transformation formulas and their application”. 
Journal of Surveying Engineering, November 1997, pp. 147-161. 

Hunter, G. J., Beard K., 1992. “Understanding error in spatial databases”. The Australian Surveyor, Vol. 37 
(2), pp. 108-119. 

Hunter, G. J., Goodchild, M. F., 1995. “Dealing with error in spatial databases: A smiple case study”. 
Photogrammetric Engineering & Remote sensing, Vol. 61 (5), pp. 529-537. 

Hunter, G. J., Goodchild, M. F., 1996. “A new model for handling vector data uncertainty in geographic 
information systems”. URISA journal, Vol. 8 (1), pp. 51-57. 

Kampmann, G., 1996. “New adjustment techniques for the determination of transformation parameters for 
cadastral and engineering purposes”. Geomatica, Vol. 50 (1), pp. 27-34. 

Leung, Y., Yan, J., 1998. “A location error model for spatial features”. Int. J. Geographical Information 
Science, Vol. 12 (6), pp. 607-620. 

Maffini, G., Arno, M., Bitterlich, W., 1989. “Observations and comments on generation and treatment of 
error in digital GIS data”. “Accuracy of spatial databases”, (Michael Goodchild and Sucharita Gopal, 
Eds.), Taylor & Francis, 290 pages, pp. 55-67. 

Mikhail E. M., 1976. “Observations and least-squares (with contributions by F. Ackermann)”. IEP-Dun 
Donnolley, New-York, 497 pages. 

Moritz, H., 1972. “Advanced least-squares methods”. Reports of the department of  geodetic science No. 
175, the Ohio State University, 129 pages. 

Ragia, L., Winter, S., 2000. “Contributions to a quality description of aerial objects in spatial data sets”. 
ISPRS journal of Photogrammetry & Remote Sensing, Vol. 55 (2000), pp. 201-213. 

Shi, W., 1998. “A generic statistical approach for modeling error in geometric features in GIS”. Int. J. 
Geographical Information Science, Vol. 12 (2), pp. 131-143. 

Stafnel L. E., Stafnel, C. M., 1993. “A model for the reliability of line connecting uncertain points”. 
Surveying and Land Information Systems, Vol. 53 (1), pp. 49-52. 

Stafnel, L. E., 1999. “Line segment reliability”. Proceeding of ACSM/WFPS/PLSO/LSAW, pp. 173-190. 
Thapa, K., Bossler J., 1992. “Accuracy of spatial data used in  geographic information systems”. 

Photogrammetric Engineering & Remote sensing, Vol. 58 (6), pp. 835-841. 
Thapa, K., Burtch, R. C., 1990. “Issues of data collection in GIS/LIS”. Proceedings of ACSM/ASPRS 

annual meeting,  Vol. 3, pp. 271-283. 
Veregin, H., 1995. “Developing and testing of an error propagation model for GIS overlay operations”. Int. 

J. Geographical Information Science, Vol. 9 (6), pp. 595-619. 


