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Abstract 

This paper reports on significant progress in our efforts to design and construct a 
real-time 3D terrain environment visual simulation system, named VGTVS (Virtual 
Global Terrain Visualization System). VGTVS supports the accurate depiction of 
terrain elevation and imagery, in addition to features such as ground cover and trees, 
moving vehicles, buildings and other static objects, roads, and atmospheric effects. 
Most of above models come from multi-scale map data. Thus an entire environment 
composed of heterogeneous parts must be simulated and integrated at rendering time. 
The system must be set up to efficiently manage this integration and, ultimately, to 
manage dynamically the complexity of each part with respect to the others in order to 
both conform to a strict time budget and to present the most telling details. In this 
paper we describe a visual simulation system that provides a hierarchical spatial data 
structure supporting all the parts described above. We discuss in detail our 
implementations for some of these parts, concentrating especially on global terrain 
visualization. 

1  Introduction 

In the past Geographic Information Systems (GIS) were 2D, map-based systems with 
decidedly non-interactive rates for high resolution display. More recently one might 
have a 3D GIS but still would type in a coordinate or make a database query and then 
wait (sometimes several seconds or more) for display of the results. Now with the 
developing of computer 3D graphics hardware and some efficient algorithms for 
terrain visualization, we have techniques for organizing geographical information to 
make integrated GIS visualization systems. We describe such a system here, " Virtual 
Global Terrain Visualization System (VGTVS)", where we have added some new 
techniques for fast handling of large amounts of visual detail (most of the scene data 
come directly from vector map data). In VGTVS, users can move through the scene in 
real-time by means of a standard input device such as a mouse, and to interact with 
the GIS. For example, you can build up such a terrain visual simulation  Flying to 
the Earth. When the view-point, which is in the outer space at beginning, is coming 



forward to the Earth gradually, the scenes in this simulation is changing as following: 
from the globe to a continent, then the countries, the states of the country and so on. 
Finally, there are static houses, running cars and something else in the scene. Of cause, 
the detail of terrain is increasing accordingly. 

A number of software tools is available that support real-time walk-through in 
three-dimensional scenes. Usually, current visualization software tools for this 
purpose limit their walk-through capabilities to a scene that is loaded once and stored 
in main memory. As a whole, the scene can be replaced by another one. While this is 
good enough for several applications, it is far from satisfactory for geo-exploration, 
where gigabytes (or even terabytes) of data, for example the data of global terrain, 
need to be explored That is, while the walk-through progresses, data must be loaded 
dynamically from disk. To reduce the graphics load, VGTVS displays exact data only 
where they are useful. In particular, a user should see all the available details of a 
scene when she can see them in reality, that is, in the close neighborhood of the 
viewpoint. The farther away we look, the fewer details we can see in reality and need 
to see in a virtual world. This is in accordance with the regular pattern of vision  
“the closer，the clearer”. 

2  System architecture 

In recent VR applications, it is still an efficiency problem the interaction with large 
worlds, including their visualization, whenever the memory requirements exceed 
available main memory. So we combine in VGTVS the two loosely coupled 
components. One is for visualization and the other is data handling. Figure 1 shows 
the overall system architecture of VGTVS in which these two components 
communicate over a (local area or wide area) network. Multiple clients are allowed to 
connect to a database and explore the same data set. Each client can independently 
request data corresponding to its needs, especially to adjust the visual part of its local 
scene to the user’s movements. Different databases could serve queries for different 
regions, for example one database-server per city. 
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 FIGURE 1. System Architecture 



The main data types which are incorporated in the data handing component are the 
grid digital elevation model (DEM) which can be generated directly from contour data 
of maps, and the texture data which can be satellite images, aerial photographs or 
topographic raster maps. Other data types are thematic information connected to a 
point location on the terrain and more types can be added as needed. However, in this 
version of VGTVS, the main source of a area visual data is the corresponding vector 
map data, as we can’t get the other types.  

In the visualization component, most of the work is performed by the dynamic scene 
manager, which takes care of updating the actual scene dynamically according to the 
user’s movements. The actual scene is only the currently visible part, a fragment of a 
much larger virtual world that is stored in the database. Furthermore, the scene 
manager also takes care of the correct LOD (level of detail) handling of the rendered 
scene. An update of the scene can be caused by user movements or changed display 
parameters from the user-interface. Such an update can involve loading new data from 
the database, or it can also require re-triangulation of parts of the scene at other LOD. 
In the following, we will discuss some important processions and new techniques in 
VGTVS. 

3  Data Pre-Processing 

There are three forms of data processing in the system of VGTVS: one is off-line 
pre-processing, which is done once per dataset; another is intermediate on-line 
processing, which is performed during the data paging stage; and the last one is 
real-time on-line processing, which is typically done once per frame.  

However, the pre-processing is playing an important role in VGTVS. The main 
purpose of the pre-processor is to gather the different types of data and transform 
them into a format that is readable by and quickly accessible to the run-time system. 
These tasks are inherently compute intensive and cannot be performed by the run-time 
system at high enough rates. Some of the basic data types within this domain include 
terrain geometry (in current implement, we choose the terrain model type of RSG 
(Regular Square Grid)), imagery (e.g. photo texture, pre-shaded relief maps, contour 
maps, etc.), and surface elements (e.g. vector data of roads, rivers and region signs in 
maps). The source data may come in a variety of file formats, which the pre-processor 
must translate to a single common format. Furthermore, to get higher frame rates, all 
the computing works that could be done before scene rendering, for example, 
calculating for the normal of points in DEM and the color values, should be finished 
during pre-processing. So it just read the results when needed during scene rendering 
and this does save more time. 

Because of the data paging algorithms, VGTVS utilizes a quad-tree structure for 
organizing multi-resolution terrain data in a hierarchical manner. Each node in a 
quad-tree identifies a fixed, square area at a given discrete resolution. Additional 
constraints force the dimensions of the raster tiles associated with the nodes to be 
powers of two because of our LOD algorithm for terrain [1]. So both the height field 



and imagery are represented as regular grids, and we do not require additional 
compute time to triangulate the height field—the different discrete levels of detail of 
the geometry are rather represented by the pyramidal regular grid structure. In fact, 
we take full advantage of the maps in different scales and the data in geography 
database when we build the models of multi-resolution terrain. Because the 
information on maps and the data in geography database are the results what people 
have learned about their environments. So they are very valuable for the environment 
simulation. Furthermore, the different map scales data can be used to build the terrain 
pyramid structure directly. With such pyramidal structure, when eye-point is moving 
to Earth’s surface, the scene data of different scales should change in turn as 
following: 1:2000 TT (ten thousand), 1:1000 TT, 1:100 TT, 1:50 TT, 1:25 TT, 1:10 TT, 
1:5 TT and so on. Hence data cutting is also an important handing during data 
pre-processing. Figure 2 shows different scenes based on map data of different scales. 

    
(a) Scene of 1:50 TT scale (c) Scene of 1:5 TT scale (b) Scene of 1:25 TT scale 

 
FIGURE 2. Scenes Based on Map Data of Different Scales 

 

In addition, because the data in different scales are based on different coordinate 
system, even the data in same scale may have their own coordinate origin, so it is very 
necessary to set up a uniform coordinate system for the data. Geography coordinate 
system is a good choice. The pre-processing of the data is done entirely in geography 
coordinate system (WGS-84). This ensures good registration between different source 
datasets and avoids the discontinuity problems often associated with flat-projected 
data. However, if a single, geocentric coordinate system were used, and assuming 
32-bit single precision floating point is used to describe geometrical objects, the 
highest attainable accuracy on the surface of the Earth is half a meter. Clearly, this is 
not sufficient to distinguish features with details as small as a few centimeters. This 
lack in precision results in “wobbling” as the vertices of the geometry are snapped to 
discrete positions. To overcome this problem, we define a number of local coordinate 
systems over the globe, which have their origins displaced to the (oblate) spheroid 
surface that defines the Earth sea level and this is also used in other global systems 
[2].  



4  Real-time Rendering System 

Many factors determine the quality of a real-time 3D visual simulation. Two of these 
are the fidelity of the scenes rendered and the frame rate of the simulation, which are 
at odds with each other. High fidelity scenes provide a greater degree of realism, 
enhancing the effectiveness of the simulator as a training device or visualization tool, 
but slowing frame rate. High frame rates, in excess of 15 frames per second, provide 
smooth motion and improve interaction between the user and simulator, but allow less 
time to render individual frames. The challenge is to add as many features that 
enhance realism as are required for the intended use of the simulator while keeping 
the frame rate above the threshold at which the human eye is able to detect individual 
frames. 

The purpose of the real-time rendering system is to support highly interactive frame 
rates during scene simulation while keep high detail at the same time. We have taken 
several advantages of new techniques to get high frame rates in VGTVS. These 
include hierarchical and tiled data structure, LOD algorithms for terrain, objects 
management and so on. Some important parts of these tasks are discussed in the 
following sections. 

4.1 Hierarchical and Tiled Data Structure 

VGTVS applies level of detail techniques to simplify both geometry and texture detail. 
This is necessary to maintain interactive frame rates as the global views that contain 
millions, or even billions, of surface polygons, with gigabytes worth of imagery. The 
dynamic scene manager is the center of importance of the visualization component. 
For the purpose of the real-time rendering, the scene manager must be responsible for 
updating the scene dynamically according to the user’s movements, it has to take care 
of the level of detail (LOD) handling, and must perform the triangulation of the 

surface. The actually rendered scene is only the currently visible part of a much larger 
virtual world, stored in the terrain database. The dynamic scene manager maintains 
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FIGURE 3. Pyramid Data Structure Based on Map data of different scales 



the points of each terrain patch in a hierarchical data structure (actually quad-tree [3]). 
So the scene is subdivided into a set of different levels and also a set of rectangular 
patches, called the scene tiles, in each level. To accommodate data paging, level of 
detail management, and view culling, a quad-tree data structure is used to spatially 
subdivide and organize the terrain raster data. As mentioned above, VGTVS utilizes a 
quad-tree structure for organizing multi-resolution terrain data in a hierarchical 
manner in practice (figure 3). The globe is subdivided into a small number of 
pre-determined areas, each corresponding to a separate quad-tree.  

Given a definite LOD of terrain, the dynamic scene manager proceeds in two stages. 
First is a coarse-grained simplification in which quad-nodes are selected at the 
appropriate resolution. This is effectual for a quad-tree can efficiently be transmitted 
in a depth-first order traversal.  

View point 
Moving direction 

Tile in disk 

Tile to be paged in 

Tile in main memory 

Tile just paged out 

FIGURE 4. Paging Algorithm of Terrain Based on Data Tiles 

When a curtain level is selected, followed by a fine-grained simplification in which 
individual vertices within each node are decimated. Whenever the observer’s 
viewpoint moves across the boundary of the central patch of the scene tiles, new rows 
or columns of patches are loaded from the database; outdated or invisible ones are 
discarded as figure 4 shows.  

4.2 Terrain Level of Detail 

The scene manager also takes care of the correct LOD assignment for every patch. 
The appropriate use of different LOD for different parts of the visible scene can 
significantly reduce the number of geometric primitives that have to be rendered. 
Simply put a larger scene with fewer details can be displayed at the same frame-rate 
as a smaller one with more details. Furthermore, the use of different LOD can also 
lead to an enhanced realistic impression of the scene, since the farther the objects are, 
the lower we choose their LOD. This corresponds nicely with the human viewing 
system that cannot distinguish small details of objects that are far away.  

At any time, the selected vertices in that quad-tree, which are currently marked to be 



displayed, form a restricted quad-tree (RQT) [4]. Whenever an update is scheduled, a 
RQT reflecting the new situation is extracted and provided for rendering the patch at 
the requested LOD. The restricted quad-tree, or an error-range quad-tree for 
incremental mesh refinement is the basic transfer and query unit. This unit is used for 
reloading or updating a terrain patch from the spatial database. 

Moreover, the LOD strategy can differ between applications. In VGTVS There are 
four different parameters which can be modified interactively: the error threshold in 
the center of the scene map, the error growth with the distance to the viewpoint (radial 
growth), the error growth with the angular difference from the view direction (axial 

growth), and the axial growth weight. Figure 5 shows an example of such an error 
distribution. The patch below the viewpoint has the highest LOD of the terrain surface 
approximation. The high LOD runs along the view direction, and the accuracy 
gradually decreases with the distance to the viewpoint and view direction. For 
efficiency reasons, we associate one LOD value with each patch of the scene. 
However, this discretization of LOD has no adverse effects on the visual impression 
because the restricted quad-tree triangulation guarantees smooth LOD transitions 
between different terrain patches [1]. 
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4.3 Object Management 

Not only terrain surface data can be 
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possible data types include texture 
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geographically referenced objects, and 
points or polygons with additional 
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patch, the scene manager maintains the 
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structures. Each data structure is 
appropriately chosen for the different 
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data types, and the respective query and update mechanisms.  

In current VGTVS, when eye point is far away from Earth’s surface, we mainly take 
the vector data of different scale maps as the surface’s objects. For instance, vector 
data of roads, rivers and settlement place (figure 6). We also use the data of 
geographical name lettering to label area. Of cause, we give the third dimension 
coordinate for each name in the three dimensions virtual space. As we all known, in a 
curtain level of scale map, cartographic feature data are also separated into different 
layers according to their importance and this can be used directly to define level of 
detail for themselves.  

  

 FIGURE 7. Add Three-dimensional Objects into Scene of Large Scale Data 

Nevertheless, when eye point is closer to surface, it is not enough that just using the 
vector map data to rendering. Some objects with three-dimensional coordinates, for 
example, buildings, trees and cars, should be added in order to get high similitude 
(figure 7). At this time, the object manager will handle the display of static and 
moving protrusive objects. For the latter it also handles animation. Since hundreds to 
thousands of objects may appear in certain scenarios, the object manager must accept 
and handle multiple levels of detail for each model [5]. Individual objects will have 
levels of detail, and there will also be grouping strategies based on data patches of 
terrain. In general moving and static objects should be managed differently since they 
will have different grouping strategies and different ways to handle object detail (e.g. 
building textures). In current VGTVS, we define a bounding box for each object and 
build up hierarchical bounding volumes for each group [6]. It is efficient for visibility 
testing that culling to the frustum, which is bounded by the near and far clip planes 
and the four sides of the viewing pyramid. So the rendering system doesn’t waste time 
processing objects that couldn’t possibly appear in the final image.  

5  Conclusions and Future Work 

Up to the present, we have designed and implemented a real-time 3D visualization 
system, VGTVS, which integrates visual simulation techniques for interactive 
rendering and management of global terrain databases with query capabilities for 
spatial geographic data. The system allows visualization of terrain and other data 



types over the entire surface of the Earth, and manages very high resolution datasets 
at real-time rates, by taking advantage of hierarchical and tiled data structure. Our 
method has a small memory requirement and the visualization system can implement 
on PC of NT 4.0/Windows 2000 operating system. The system has met its original 
requirements for high interactivity and the ability to handle huge databases, and has 
proved useful for many visualization tasks. 

Though we can handle huge graphical databases for real-time rendering, there is still 
some obvious “Popping” phenomenon when scenes change between different scales 
of map data. So our next step will focus on the algorithms to overcoming this shortage 
and then try to build up an integrated global visualization system based on Digital 
Earth. 
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