
Generalizing satellite maps with neural networks

Adam IWANIAK
Institute of Geodesy and Photogrammetry, Wroclaw Academy of Agriculture
ul.Grunwaldzka 53, 50-357 Wroclaw, Poland
iwaniak@ar.wroc.pl

Witold PALUSZYNSKI
Institute of Engineering Cybernetics, Wroclaw University of Technology
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Witold.Paluszynski@ict.pwr.wroc.pl

Abstract
In this paper the possibility of using neural networks to generalize selected elements of
satellite maps was investigated. Generalizing raster maps requires a different approach
from generalizing vector maps. Most of the existing raster map generalization methods
are connected with methods for analysis and processing of images. Several neural
networks for aggregating buildings in satellite maps of urban areas have been created.
Image examples of maps, generalized both in vector mode and with neural networks, as
well as a summary of the main factors affecting the performance of the networks, are
presented in the paper. The conclusion is that neural networks can be trained to perform
map processing characteristic of urban area aggregation, and the results, while not
perfect in the sense used with vector maps, are very encouraging.

Introduction
Contemporary GIS systems need generalization. While much work in the past has been
devoted to vector-based generalization, raster-based techniques have received less
attention. However, for some types of generalization processes, like area generalization
(aggregation, and the like), raster-based techniques seem very natural to apply [Brown,
1999]. On the other hand, there is a growing supply of high-resolution satellite images,
and the resulting demand for efficient techniques for processing these.

Artificial neural networks [Rumelhart, 1991] is an approach to constructing highly
parallel systems for distributed processing of data. They are patterned after the network
of neurons in the brain, and take advantage of high processing capabilities resulting
from connecting a large number of very simple processing elements. Neural networks
can also learn and so they do not need to be programmed. A network is trained by
presenting it training sets consisting of input data and expected output data, and having
the network adjust its parameters to minimize the difference.

In this paper we report on a series of experiments we have conducted with constructing
and training neural networks to perform aggregation of buildings in raster maps.

Training neural networks for raster map processing
The goal of the experiments described here was to construct and train a neural network
for processing raster maps of arbitrary size. The type of processing was the aggregation

of buildings into built-up areas typical in the process of map generalization when
converting to a lower scale. Previous experiments with this type of processing have
been described in [Iwaniak, Kubik, Paluszynski, 2001].

Area feature aggregation needs to take into account the relations of nearby objects, so
two-dimensional areas of some size have to be considered in making the aggregation
decisions. Therefore, the input layer of the neural network should be a two-dimensional
array of neurons processing the corresponding elements (pixels) of a map.

It would, however, be hard to create neural networks with input layers the size of raster
maps. To solve this problem it was decided that the neural network would work as a
filter. More precisely, a network of a constant predefined rectangular size would be fed
map data from a likewise-sized area (called a mask) of the map being processed. Then,
the output of the network would produce the corresponding area of the result map. In
all experiments, the size of this section of the result map was one pixel – the middle

point, Fig.1.

processed raster

mask

original raster

Fig.1. Processing a raster using a neural network filter

In this setting, network training would be performed by presenting the network with
pairs of original raster maps together with their properly processed versions. The data
sets were prepared by taking a large section from a satellite map with buildings marked
in a separate layer using the manual procedure. The original map was converted to
vector format and area aggregation operator from the MGE Map Generalizer was
applied to it, creating the built-up areas aggregated to a larger or lesser extent depending
on the distance threshold parameter setting.

Fig. 2 shows a small example of such a training pair (buildings and aggregated areas).
The original map size is 500300 pixels, and the processed map is slightly smaller,
492292 pixels. (The size difference is due to the filter processing mechanism outlined
above and corresponds to the mask size of 99 pixels.)

Fig. 2. The first training set: the original raster (left), and the raster aggregated with
aggregation extent of 2 pixels (right)

The training proceeded in cycles. In each cycle the mask was moved to all possible
positions in the original raster. At each mask position all the network connection
weights were adjusted according to the learning algorithm, by comparing the value of
the network-computed middle point pixel with the actual value of the corresponding
pixel in the processed map. These positions were taken randomly in each cycle, i.e. the
mask "jumped" randomly around the map, not taking the same positions twice during
each cycle. The training was considered complete when the network calculation error
stopped decreasing between successive cycles. This usually occurred after several
hundred cycles.

In the second series of experiments the processing of the original map consisted of
building aggregation and scale change. The aggregation parameters were set such that
corresponded to a two-fold size reduction, and then the whole map size was reduced in
half. This process is similar to generalization and the goal of these experiments was to
test the ability of the neural network to generalize these elements of raster maps. Fig. 3
shows the training set. The original raster was the same as before (500300 pixels), and
the processed raster corresponding to the 99 mask was 246146 pixels.

Fig. 3. The second training set: the original raster (left), and the generalized raster (right)

The role of the network architecture
An important decision to make was to select a neural network type and its specific
architecture. The network type used was a standard feed-forward network with three
layers of neurons, the input layer, which is the processing filter with sizes ranging from
55 to 1919, the middle layer, with several different sizes tried, and the output layer,
always the single middle-point neuron. The variations built into the network
architecture stemmed from the fact that a greater complexity of the network is necessary
for it to be able to learn – and memorize – complex processing patterns. The middle
layer of the network and the neuron connection weights would provide this complexity
and capacity. Full network connectivity was used, meaning that all neurons of the input
layer had direct connections to all the neurons of the internal layer, and all those
neurons had connections to the (single) output layer neuron. All these connections had
weights constantly adjusted during training.

However, networks too large and complex for a given task exhibit overfitting, where the
network learns all the patterns perfectly, but on data outside the training set exhibits
large errors. In other words, there tends to be the right size and complexity of a neural
network for a given task, and aside from some general guidelines, experiments are
needed to determine the size of the hidden layer. (There are results in the neural
network theory indicating that feed-forward networks with one internal layer are able,
given sufficient size, to learn all the same types of patterns as networks with more
internal layers.)

On the other hand, the learning function does not affect the final performance of the
network, only the learning time, so we chose to use the simple backpropagation
learning function and each time train the network until it was obvious that no further
progress can be made. The initial connection weights were randomly selected in the
range of –1.0 to +1.0.

Results
The experiments have been conducted using the Stuttgart Neural Network Simulator
[SNNS, 1995]. Several neural networks have been trained on so prepared data,
corresponding do different degrees of aggregation and mask sizes. Separate testing data
have been then prepared and processed by the networks. The results are presented here.
(In theory, testing data only consists of the original, source raster. In actuality, they
have been vector-processed in the same way as the training data, for the purpose of
error estimation, presented below.)

Fig. 4 shows examples of rasters processed with two networks using 55 and 1111
masks. As can be seen, the neural networks processed the maps generally correctly.
Buildings have been merged where they were close together, and left alone where they
were far apart. The 55 mask is just barely too small for the extent of aggregation used,
so the result obtained with the 1111 mask is more complete.

Fig. 4. Top row: original (left) and vector-generalized raster (right); bottom row: neural
network results obtained with a 55 (left) and 1111 mask (right); in both cases network

output thresholded at 0.5

Fig. 5 shows the results from neural networks trained to perform aggregation as well as
scale reduction. This is the setting that this approach is really meant to be applied;
namely, to process a map to for its visual appearance accompanying scale change. The
appearance of the built-up areas in the smaller map should be similar to the appearance
of buildings in the original map.

Fig.5. Aggregation and size reduction (99 mask): 2-pixel aggregation extension (top
right), 4-pixel aggregation extension (bottom right)

Fig.6. Satellite map example: original raster (top), 2 size reduction (bottom left),
aggregated and reduced by neural network (bottom right)

The overall result of the neural network processing of raster maps can be seen in the last
example. Fig.6 shows a section of a satellite image of a suburb area of Warsaw
together with (part of) the same image reduced directly, and processed by the
aggregating and reducing neural network. The directly reduced image does not
reproduce the buildings well while the neural network-processed image shows the built-
up areas as expected.

Error estimation
The experiments described above result in different-looking result maps, some of which
appear "better" than others. It would be valuable to have some objective measure of
quality in order to apply the neural network processing in an optimal way. This,
however, turns out to be hard. Aggregated rasters are different from the original, and
which of several aggregates are better, or best, is often a matter of subjective judgement.
We have not attempted to make such subjective evaluations.

Instead, we have decided to use a simple measure to check which result was the closest
to the "standard", by which we mean the same vector-mode aggregation used to create
patterns for training the neural network. The measure of processing error is the sum of
relative errors of black and white pixels. This error in function of mask size and neural
network output threshold was examined in various cases.

The main trend noted is that the mask size tends to have an optimal value, or rather a
range of values, outside of which the error goes up. This phenomenon can be
explained. A mask of a size too small to encompass the area in which buildings are to
be aggregated, may not make correct aggregation decisions. Then, above a certain
mask size, the error starts growing rapidly. This is the result of neural network
"overfitting" (a network of too high complexity, computing a higher order formula than
necessary). The actual values of the optimal mask size range have been found to be
related to the aggregation extent used in training the network. This is also the expected
effect.

The best results (smallest error values) are generally for the threshold of 0. However, in
this case, a visual (subjective) evaluation of the result maps leads to a different
observation. Maps obtained with neural network output thresholds higher than 0 have a
more pleasing visual appearance, despite higher absolute errors. This effect is due to
the nature of neural network computing, which creates some "noise" effects around
polygon edges and especially corners. By using higher threshold levels these effects are
reduced and lines are smoother, but this happens at the cost of cutting slightly into the
contours of buildings.

The same noise effects can also be reduced by some post-processing using such
algorithms as median filtration. After using is in some early experiments we have later
abandoned it when processing larger satellite images, especially those with size
reduction. It turned out that such effects are very apparent in close examination, but
when viewing a complete map they do not contribute much to the general impression.
On the other hand, the aggregation effects are apparent and unaffected.

The conclusion we make is that neural network processing alone works well for the
purpose, for which we intended it, namely, for fast and efficient processing of large
images. On the downside, we should note the high processing cost of network training
and the necessity of preparing separate networks for different scale changes.

The training of our networks took from a few hours for smaller masks and maps up to
many days of computing using computers such as a Sun Microsystems Ultra Enterprise
3500 with 400 MHz processors.

References

Brown, A., Raster-based generalization of polygon data, with special reference to
coastlines, Proceedings 19th ICA/ACI, Ottawa, 1999

Iwaniak, A., Kubik, T., and Paluszynski, W., An approach to generalizing raster maps
with neural networks, GIS2001, Vancouver, 2001

Rumelhart, D., Neural Networks – a Parallel Distributed Processing Perspective, Proc.
of Neural Networks Summer School – Theory, Design, and Applications, Cambridge,
1991

SNNS Stuttgart Neural Network Simulator, User Manual, Version 4.1, University of
Stuttgart, Institute for Parallel and Distributed High Performance Systems, Report
No.6/95, 1995, http://www.informatik.uni-
stuttgart.de/ipvr/bv/projekte/snns/UserManual/UserManual.html

http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/UserManual/UserManual.html
http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/UserManual/UserManual.html

	Abstract
	Introduction
	Training neural networks for raster map processing
	The role of the network architecture
	Results
	Error estimation
	References

