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Abstract 
In this paper the possibility of using neural networks to generalize selected elements of 
satellite maps was investigated.  Generalizing raster maps requires a different approach 
from generalizing vector maps.  Most of the existing raster map generalization methods 
are connected with methods for analysis and processing of images.  Several neural 
networks for aggregating buildings in satellite maps of urban areas have been created. 
Image examples of maps, generalized both in vector mode and with neural networks, as 
well as a summary of the main factors affecting the performance of the networks, are 
presented in the paper.  The conclusion is that neural networks can be trained to perform 
map processing characteristic of urban area aggregation, and the results, while not 
perfect in the sense used with vector maps, are very encouraging. 

Introduction 
Contemporary GIS systems need generalization.  While much work in the past has been 
devoted to vector-based generalization, raster-based techniques have received less 
attention.  However, for some types of generalization processes, like area generalization 
(aggregation, and the like), raster-based techniques seem very natural to apply [Brown, 
1999].  On the other hand, there is a growing supply of high-resolution satellite images, 
and the resulting demand for efficient techniques for processing these. 
 
Artificial neural networks [Rumelhart, 1991] is an approach to constructing highly 
parallel systems for distributed processing of data.  They are patterned after the network 
of neurons in the brain, and take advantage of high processing capabilities resulting 
from connecting a large number of very simple processing elements.  Neural networks 
can also learn and so they do not need to be programmed.  A network is trained by 
presenting it training sets consisting of input data and expected output data, and having 
the network adjust its parameters to minimize the difference. 
 
In this paper we report on a series of experiments we have conducted with constructing 
and training neural networks to perform aggregation of buildings in raster maps. 

Training neural networks for raster map processing 
The goal of the experiments described here was to construct and train a neural network 
for processing raster maps of arbitrary size.  The type of processing was the aggregation 



of buildings into built-up areas typical in the process of map generalization when 
converting to a lower scale.  Previous experiments with this type of processing have 
been described in [Iwaniak, Kubik, Paluszynski, 2001]. 
 
Area feature aggregation needs to take into account the relations of nearby objects, so 
two-dimensional areas of some size have to be considered in making the aggregation 
decisions.  Therefore, the input layer of the neural network should be a two-dimensional 
array of neurons processing the corresponding elements (pixels) of a map. 
 
It would, however, be hard to create neural networks with input layers the size of raster 
maps.  To solve this problem it was decided that the neural network would work as a 
filter.  More precisely, a network of a constant predefined rectangular size would be fed 
map data from a likewise-sized area (called a mask) of the map being processed.  Then, 
the output of the network would produce the corresponding area of the result map.  In 
all experiments, the size of this section of the result map was one pixel – the middle 

point, Fig.1. 
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Fig.1. Processing a raster using a neural network filter 

In this setting, network training would be performed by presenting the network with 
pairs of original raster maps together with their properly processed versions.  The data 
sets were prepared by taking a large section from a satellite map with buildings marked 
in a separate layer using the manual procedure.  The original map was converted to 
vector format and area aggregation operator from the MGE Map Generalizer was 
applied to it, creating the built-up areas aggregated to a larger or lesser extent depending 
on the distance threshold parameter setting. 
 
Fig. 2 shows a small example of such a training pair (buildings and aggregated areas).  
The original map size is 500300 pixels, and the processed map is slightly smaller, 
492292 pixels.  (The size difference is due to the filter processing mechanism outlined 
above and corresponds to the mask size of 99 pixels.) 
 



Fig. 2. The first training set: the original raster (left), and the raster aggregated with 
aggregation extent of 2 pixels (right) 

The training proceeded in cycles.  In each cycle the mask was moved to all possible 
positions in the original raster.  At each mask position all the network connection 
weights were adjusted according to the learning algorithm, by comparing the value of 
the network-computed middle point pixel with the actual value of the corresponding 
pixel in the processed map.  These positions were taken randomly in each cycle, i.e. the 
mask "jumped" randomly around the map, not taking the same positions twice during 
each cycle.  The training was considered complete when the network calculation error 
stopped decreasing between successive cycles.  This usually occurred after several 
hundred cycles. 
 
In the second series of experiments the processing of the original map consisted of 
building aggregation and scale change.  The aggregation parameters were set such that 
corresponded to a two-fold size reduction, and then the whole map size was reduced in 
half.  This process is similar to generalization and the goal of these experiments was to 
test the ability of the neural network to generalize these elements of raster maps.  Fig. 3 
shows the training set.  The original raster was the same as before (500300 pixels), and 
the processed raster corresponding to the 99 mask was 246146 pixels. 
 

Fig. 3. The second training set: the original raster (left), and the generalized raster (right) 

The role of the network architecture 
An important decision to make was to select a neural network type and its specific 
architecture.  The network type used was a standard feed-forward network with three 
layers of neurons, the input layer, which is the processing filter with sizes ranging from 
55 to 1919, the middle layer, with several different sizes tried, and the output layer, 
always the single middle-point neuron.  The variations built into the network 
architecture stemmed from the fact that a greater complexity of the network is necessary 
for it to be able to learn – and memorize – complex processing patterns.  The middle 
layer of the network and the neuron connection weights would provide this complexity 
and capacity.  Full network connectivity was used, meaning that all neurons of the input 
layer had direct connections to all the neurons of the internal layer, and all those 
neurons had connections to the (single) output layer neuron.  All these connections had 
weights constantly adjusted during training. 
 



However, networks too large and complex for a given task exhibit overfitting, where the 
network learns all the patterns perfectly, but on data outside the training set exhibits 
large errors.  In other words, there tends to be the right size and complexity of a neural 
network for a given task, and aside from some general guidelines, experiments are 
needed to determine the size of the hidden layer.  (There are results in the neural 
network theory indicating that feed-forward networks with one internal layer are able, 
given sufficient size, to learn all the same types of patterns as networks with more 
internal layers.) 
 
On the other hand, the learning function does not affect the final performance of the 
network, only the learning time, so we chose to use the simple backpropagation 
learning function and each time train the network until it was obvious that no further 
progress can be made.  The initial connection weights were randomly selected in the 
range of –1.0 to +1.0. 

Results 
The experiments have been conducted using the Stuttgart Neural Network Simulator 
[SNNS, 1995].  Several neural networks have been trained on so prepared data, 
corresponding do different degrees of aggregation and mask sizes.  Separate testing data 
have been then prepared and processed by the networks.  The results are presented here.  
(In theory, testing data only consists of the original, source raster.  In actuality, they 
have been vector-processed in the same way as the training data, for the purpose of 
error estimation, presented below.) 
 
 
 
Fig. 4 shows examples of rasters processed with two networks using 55 and 1111 
masks.  As can be seen, the neural networks processed the maps generally correctly.  
Buildings have been merged where they were close together, and left alone where they 
were far apart.  The 55 mask is just barely too small for the extent of aggregation used, 
so the result obtained with the 1111 mask is more complete. 



Fig. 4. Top row: original (left) and vector-generalized raster (right); bottom row: neural 
network results obtained with a 55 (left) and 1111 mask (right); in both cases network 

output thresholded at 0.5 

Fig. 5 shows the results from neural networks trained to perform aggregation as well as 
scale reduction.  This is the setting that this approach is really meant to be applied; 
namely, to process a map to for its visual appearance accompanying scale change.  The 
appearance of the built-up areas in the smaller map should be similar to the appearance 
of buildings in the original map. 
 

Fig.5. Aggregation and size reduction (99 mask): 2-pixel aggregation extension (top 
right), 4-pixel aggregation extension (bottom right) 



Fig.6. Satellite map example: original raster (top), 2 size reduction (bottom left), 
aggregated and reduced by neural network (bottom right) 

 
The overall result of the neural network processing of raster maps can be seen in the last 
example.  Fig.6 shows a section of a satellite image of a suburb area of Warsaw 
together with (part of) the same image reduced directly, and processed by the 
aggregating and reducing neural network.  The directly reduced image does not 
reproduce the buildings well while the neural network-processed image shows the built-
up areas as expected.  



Error estimation 
The experiments described above result in different-looking result maps, some of which 
appear "better" than others.  It would be valuable to have some objective measure of 
quality in order to apply the neural network processing in an optimal way.  This, 
however, turns out to be hard.  Aggregated rasters are different from the original, and 
which of several aggregates are better, or best, is often a matter of subjective judgement.  
We have not attempted to make such subjective evaluations. 
 
Instead, we have decided to use a simple measure to check which result was the closest 
to the "standard", by which we mean the same vector-mode aggregation used to create 
patterns for training the neural network.  The measure of processing error is the sum of 
relative errors of black and white pixels.  This error in function of mask size and neural 
network output threshold was examined in various cases. 
 
The main trend noted is that the mask size tends to have an optimal value, or rather a 
range of values, outside of which the error goes up.  This phenomenon can be 
explained.  A mask of a size too small to encompass the area in which buildings are to 
be aggregated, may not make correct aggregation decisions.  Then, above a certain 
mask size, the error starts growing rapidly.  This is the result of neural network 
"overfitting" (a network of too high complexity, computing a higher order formula than 
necessary).  The actual values of the optimal mask size range have been found to be 
related to the aggregation extent used in training the network.  This is also the expected 
effect. 
 
The best results (smallest error values) are generally for the threshold of 0.  However, in 
this case, a visual (subjective) evaluation of the result maps leads to a different 
observation.  Maps obtained with neural network output thresholds higher than 0 have a 
more pleasing visual appearance, despite higher absolute errors.  This effect is due to 
the nature of neural network computing, which creates some "noise" effects around 
polygon edges and especially corners.  By using higher threshold levels these effects are 
reduced and lines are smoother, but this happens at the cost of cutting slightly into the 
contours of buildings. 
 
The same noise effects can also be reduced by some post-processing using such 
algorithms as median filtration.  After using is in some early experiments we have later 
abandoned it when processing larger satellite images, especially those with size 
reduction.  It turned out that such effects are very apparent in close examination, but 
when viewing a complete map they do not contribute much to the general impression.  
On the other hand, the aggregation effects are apparent and unaffected. 
 
The conclusion we make is that neural network processing alone works well for the 
purpose, for which we intended it, namely, for fast and efficient processing of large 
images.  On the downside, we should note the high processing cost of network training 
and the necessity of preparing separate networks for different scale changes. 
 



The training of our networks took from a few hours for smaller masks and maps up to 
many days of computing using computers such as a Sun Microsystems Ultra Enterprise 
3500 with 400 MHz processors. 
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