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Abstract 
In this paper, the famous Douglas & Peucker algorithm for line generalization is mathematically revisited and shown 
to be applicable to sets of objects of any geometric kinds. 
 
Keywords 
Cartographic Selection, Generalization, Hausdorff distance, Spatial Analysis 
 
I. Introduction 
In his “Theory of the Cartographic Line”, Thomas K. Peucker explains that the algorithm he designed in 
collaboration with David H. Douglas was meant for line generalization (Peucker 1976 : 138), and contemporarily 
though independently developed in “at least two other papers”, yet for other purposes. In vector cartography today, 
the Douglas & Peucker algorithm is certainly the most popular line simplification operator, widespread both in 
commercial GISs (because it is easy to program and it provides tolerable results) and in research publications 
(because it can be altered, refined or indeed improved in a variety of directions). Reviews can be found in (Cromley-
Campbell 1991), (Hershberger-Snoeyink 1992), (Plazanet 1996), (Visvalingam-Herbert 1999). 
 
The Douglas & Peucker algorithm takes for input a Polyline (a chain of vertices or, equivalently, of segments), a 
Segment (usually the first and last vertices of the Polyline), and a Threshold (a distance threshold). By recursively 
splitting the Polyline, it returns a succession of segments. The algorithm runs as follows: 

pmax  
DP(Polyline, Segment, Threshold) 
dmax ← greatest distance from Polyline to Segment 
pmax ← corresponding farthest Polyline vertex  
 
if dmax > Threshold then 

Polyline1 ← All Polyline segments from pi (first vertex) to pmax  
Polyline2 ← All Polyline segments from pmax to pf  (last vertex) 
Segment 1 ← [pi, pmax] 
Segment 2 ← [pmax, pf] 
Return DP(Polyline1, Segment1)  DP(Polyline2, Segment2) 

dmax 

Polyline1, 
Segment1 

Polyline2, 
Segment2 

Threshold 

Polyline, 
Segment 

else 
Return {Segment} 

end if 
 
end program 
 
 

Final 
Segments 

Douglas and Peucker have generalized their own algorithm to terrain 
simplification, using a DTM instead of the Polyline, triangles instead of 
segments, and computing the maximal distance from DTM vertex to current 
triangular facet instead of computing the maximal distance from polyline 
vertex to segment; the initial approximation consisting of the corners of the 
DTM linked triangularily to the highest vertex (Douglas-Peucker 1975). 
 
The aim of this paper is to show that the Douglas & Peucker algorithm, though originally designed for line or surface 
generalization, may be used for the generalization (either abruptly, or as a preliminary phase) of any kinds of objects, 
with a few mathematical arrangements only. 
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II. Notations 
This section, where all our notations are introduced, may be skipped upon reading if appearing too tedious. Upon 
writing however we cannot skip it, as the mathematical fundamentals of our algorithm all belong here. 
 
II.1 General 

Set difference: X\Y denotes the set of elements in set X which are not in set Y. 

Set of subsets: Þ(X) denotes the set of all (finite) subsets of X. 
 
II.2 Geometry and Objects 

P is the plane, identified to R2, measured by the euclidean distance (R is the set of real numbers). 
p is a point in the plane: Pp . 

),( qpd  is the euclidean distance between points p and q. 
 
g is a closed and bounded set of points in the plane. 
o is the set of a unique g : o = {g}. 
Practically: o is an object, g a geometry (allowed by definition to be disconnected). 

g1 o1 

g2  

G stands for the set of all possible g : G is the set of closed bounded sets of points in the plane. 
o2 O stands for the set of all possible o : O is the set of sets of a closed bounded set of points in the plane. 

A Figure is a finite set of elements of O. A Figure belongs to Þ(O)    (eg. Figure = {o1, o2}). 
 

To provide a handle on the geometry of a given object, the operator is introduced as : 

  :  O → G 
   oggoo  }{|)( G

To retrieve the geometry of a given Figure, the  operator is defined as: 

  : Þ(O) → G 
   Figure

i
o i

oFigureFigure  )()(   

 
II.3 Hausdorff Measures 
The following function dHu1 is introduced to measure the greatest spatial distance from an object to a set of objects: 
 

dHu1 :  OxÞ(O) → R+
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The following function dH1 is introduced to measure the greatest spatial distance from a set of objects (A) to another 
set of objects (B): 
 

dH1 :  Þ(O)xÞ(O) → R+
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dH1(B,A)  
dH1 is not symmetric. 
It is worth recalling that function dH : 
 (A) dH1(A,B) 

dH : Þ(O)xÞ(O) → R+
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… is a true mathematical distance between sets of objects considered for their geometry. Usually, this distance is 
called the Hausdorff distance between sets A and B. As it expresses remoteness, it is often used in feature-matching 



in image processing (Galton 1997), and for controlling the results of a generalization operation (Hangouët 1995). It is 
used implicitly by the Douglas & Peucker algorithm: when the greatest distance from polyline to segment is 
computed, this is indeed the computation of dH1({Polyline},{Segment}), the “A to B” component of the Hausdorff 
distance… 
 
 
III. The Douglas & Peucker Algorithm Generalized 
 
The latter observation has suggested the generalization of the Douglas and Peucker algorithm we propose in this 
paper: the Hausdorff distance may be computed between sets of objects of any kind, not restrictedly between 
polylines. By merely changing the domain of the input parameters, and using a generic splitting method, while 
preserving the general structure of the algorithm, we will be equipped with a new tool for automatically approaching 
any given figure with a not-too-distant approximation. We will first list the structure of the algorithm, then provide a 
few but important comments as to what “splitting” and “approximating” mean, and also indications on how it may be 
programmed. Cartographic applications will be given in section IV. 
 
III.1 Douglas & Peucker Generalized 
 
The structure of our algorithm is exactly that of the Douglas & Peucker algorithm: the first part consists in computing 
the greatest distance from Figure to Approximation; the second part in checking whether the distance is smaller than 
a distance threshold or not and in acting consequently (respectively: accepting the Approximation, or segmenting the 
figure into sub-figures with new approximations and applying the algorithm on each sub-figure with new 
approximation). The major difference between this and the Douglas & Peucker algorithms lies in the nature of the 
parameters: no limitation is made now as to the geometry of the Figure (no longer a polyline only) nor as to that of 
the Approximation (no longer a segment only). 
 
Algorithm DPG (for: Douglas and Peucker Generalized): 
 

Input:  Figure  Þ(O),   Proxy  Þ(O),  Threshold   R+
 

Output:  Proxy’  Þ(O), 
 
DPG(Figure, Proxy, Threshold)  
 
 
dmax ←  / Hausdorff component from Figure to Proxy / )(

1
roxyPFigure,

H
d

Pmax ←  / Points of the Figure farthest from Proxy / }
max
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dFigurep 

 
if dmax > Threshold / Distance test / 
 

)
max

,,(SPLITS ProxyPFigureSubConfigs   / Relevant subparts and possible approximations / 

return  / Recursive application / ),,),( (DPG ThresholdjroxPSubConfigsjroxPjFig
j

Fig 

else 
return Proxy / Sufficient Approximation / 

 
end if 
 
end program 
 
III.2 Comments 
 
Splitting 
The algorithm makes use of a generic function SPLITS (Fig, Approx, Pm), whose characteristics must be as follows: 

Input: Fig  Þ(O),  Approx  Þ(O),  Pm   Þ(G)  



Output:  a set of couples: (Figj, Approxj) such that : 
a/   and Figi i

Fig  {},,,  jFigiFigjiji   

(Through SPLITS, figure Fig is entirely segmented into subparts ie. into separate sets of objects). 
b/ to each subpart is associated a particular approximation such that : 
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… which ensures the convergence of the algorithm. 
 
SPLITS consists in segmenting both the Figure and the Approximation given particular points indicated in Pm. How 
the SPLITS function may work in deed on the basis of the Figure, the Approximation and some particular points, is a 
matter of external expertise. In the case of Douglas & Peucker, Pm contains the farthest vertex from Line (ie. Figure) 
to Segment (ie. Approximation), and SPLITS consists both in cutting the line in two at this point, and in recomputing 
a segment for either section. In the applications of section IV, another SPLITS method is used, which however has 
the same input/output characteristics. 
 
Starting the algorithm. The choice of the initial Approximation with which to start the algorithm is always tricky, 
because the result will obviously vary accordingly. The classical Douglas & Peucker starts with the two endpoints of 
the polyline as initial segment; when the polyline is closed, the two points of its diameter (the pair of vertices that are 
farthest apart) are usually chosen. The most reliable general strategy, for DPG, consists in starting with an object or a 
few objects with a large extension across the map. This is consistent with the “philosophy” of remoteness which 
structures the interpretation of the Hausdorff distance. 
 
Tuning the threshold. Choosing the threshold may appear to be less tricky, being more obviously scale- and purpose-
dependent: Scale-dependent because selection aims at freeing space for legible symbolization at smaller scales; 
purpose-dependent because symbolization itself is purpose-dependent. However, setting right away the best threshold 
(to say nothing of automatically tuning the threshold), the one for which output images look most harmonious at 
desired scale and symbolization, is still a matter of luck, not of determinism. 
 
Programming. Voronoi diagrams on points help quickening the exact search for farthest extra point (Kreveld et al. 
1997); on lines they help quickening the exact computation of the Hausdorff distance between lines (Alt et al. 1991) 
as well as between areas (Hangouët 2000). In the absence of Voronoi tools, approximate computations can be made 
by discretizing the geometry of the objects: for each object, a few points are made to stand for it, and any distance 
computation is made on points. 
 
 
IV. Cartographic Applications 
In the various “cartographic” applications shown in this section both to illustrate the algorithm and to prepare the 
justification of its usefulness for automated map-making, a same, quite simple, SPLITS method is used. It is 
described in the first next paragraph. It is remarked that this splitting method may lead to a non-recursive version of 
the DPG algorithm, the formulation of which is given in the second paragraph. Cartographic results are then 
illustrated in the following paragraphs, on a dot-map, on a line-map, on a land-use map. 
 
IV.1 Approximating 
The SPLITS function used here is the most straightforward we could conceive in our eagerness to carry out the first 
tests for our intuition: SPLITSPRIME(Fig, Approx, Pm) = }){})(|{,({ 

i
oPmFig

i
oApproxFig  . 

Only one couple (Fig,Approx) is returned, Fig being the entire figure (no splitting in fact!), and Approx being 
augmented with objects from Fig whose geometries contains the points indicated in Pm. This SPLITSPRIME 
function has the characteristics of a SPLITS function (notably, it is clear that the DPG will converge). 
 
IV.2 Non-Recursive Formulation 
As the figure is never split by SPLITSPRIME, integrating this function into the DPG algorithm leads to a non-
recursive algorithm. Here is the formulation of the “Non-Recursive Douglas & Peucker Generalized” algorithm used 
for the cartographic examples to follow: 
 

Input:  Figure  Þ(O),   Proxy  Þ(O),  Threshold   R+
 

Output:  Proxy’  Þ(O), 



 
NRDPG(Figure, Proxy, Threshold)  
 
dmax ←  / Hausdorff component from Figure to Proxy / )(

1
roxyPFigure,

H
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While dmax > Threshold / Distance test / 

Pmax ← }
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dFigurep   / Points of the Figure farthest from Proxy / 
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oroxyProxyP  / Proxy augmented with remotest Figure components / 

dmax ←  / Hausdorff component from Figure to new Proxy / )(
1
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H
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end while 
 
return Proxy / Sufficient Approximation / 
end program 
 
 
IV.3 On Points 
 
Here, the Figure is made up of points – it may be a dot map, in cartography. A good initial approximation, consistent 
with the idea of maximal remoteness engineered by the Hausdorff distance, is the two points of the Diameter of the 
set (ie. the two points on the convex hull lying farthest apart). As illustrated below, the algorithm little by little selects 
the farthest points until any new point falls within the specified distance from some already selected point. 
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   Initial Figure and its Diameter   NRDPG(Figure,Diameter, 15)   NRDPG(Figure,Diameter, 15) + 

Dot size proportional to the 
number of unshown neighbours 
around. 
 

This may find direct applications in the generalization of dot maps at small scales where “lack of space requires 
severe selection” (Dahlberg 1967:133) and “much of the locational specificity inherent in the dot (…) is lost” 
(id.:132). Choosing a Threshold in relation to the minimal ground distance allowed by legibility at the small scale and 
applying the algorithm will lead to a both locational-consistent and readable selection of representative dots. As 
shown in the illustration above, graphic “tricks” may help make the final map even more readable. 
A similar method, yet differing somewhat as to the test made (1/ start from the Diameter dots, 2/ put them in 
Approximation, 3/ find dot farthest from Approximation, 4/ repeat step 3/ until a certain number of dots is reached), 



and in fact not recognized for its kinship with Douglas and Peucker, has been designed by (Kreveld et al. 1997) for 
the scale-dependent automatic display of settlement data, and provides agreeable results. 
 
 
IV.4 On Lines 
 
Here, the Figure is made up of lines – it could be a street map. A good initial approximation, because extension is 
consistent with the idea of maximal remoteness engineered by the Hausdorff distance, is the line with the widest span, 
or a set of a few lines. In the illustration below, the Figure is composed of the 16 major and minor lines of the 
Parisian métro (this is a rough, self-made sketch only. Official métro plans are nice-looking). Let us remark that if the 
original data format is topological (with nodes and arcs between them), we need to build complex objects composed 
of arcs to get each metro line, or each street of a town: in other words, topological structure is not necessary. 
 

100

 
Figure = set of métro lines     NRDPG(Figure, “Ligne 1”, 100) 
Initial approximation = “Ligne 1”     Mean discretization: 215 points per métro line 
 
It is a bit hard to grasp what happened between these plans, in spite of their similarity: lines are removed in order to 
minimize the degradation of the servicing of Paris by metro. This process could be compared with spillikins, but with 
opposite constraints: whereas at spillikins we begin by picking up isolated sticks, the first lines to be “removed” are 
the ones which are the closest to another one. 
This example (metro plan), if a good one to show how NRDPG works, is not very interesting for map generalization: 
a street plan of a city like Montréal could show better results. Let us remark that, according to the purpose in using 
NRDPG, it is possible to define differently the distance between two lines, taking into account for instance the area of 
the convex hull of both lines; it could also be interesting to weight each line according its importance (length, 
semantic, …). 
 
 
IV.5 On Areas 
 
Here, the Figure is made up of areas – it could be a land-use map. A good initial approximation, for the now familiar 
reason that extension is consistent with the idea of maximal remoteness engineered by the Hausdorff distance, is the 
area with the widest-spanning form, or a set of a few areas. In the illustration below, the Figure is composed of 295 
buildings (from IGN’s BDTopo data on a southern French village), and the initial approximation consists of the 



pair of remotest buildings. The discretization used was only one point per building (the centroid of corners). Tests are 
being elaborated to compare this roughest one-point discretization with discretization with more points and with 
Voronoi-exact” results. 

 

“
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Figure = set of buildings (BDTopo data)     NRDPG(Figure, Diameter, 30) 
Initial approximation = Diameter buildings     Mean discretization: 6.7 points per building 

, as it has been said for NRDPG on lines, to assign a big weight to main buildings in distance 

tterns 
ke alignments (typically, residential areas in French Riviera), NRDPG can be used without any modification. 

 of any kind of geometry, yet keeping within some 

 
Two main reproaches may be made to NRDPG used as a generalization algorithm. First, structural information is not 
preserved: regular patterns like alignments between buildings (Cf. illustration above, on the left) no longer appear; in 
fact, from the moment the chosen threshold is equivalent to the mean diameter of the “holes”, a homogeneous 
distribution is obtained and alignments are often lost. Nevertheless, it has to be emphasized that the sensation of 
space occupation is well kept: the limits and the shape of the town are preserved successfully. The second reproach 
we can notice in the example above is that nothing prevents the removing of important buildings, either because of 
their size or their semantic attribute: a solution to that problem could be to include important buildings in the initial 
approximation or
computation. 
In areas in which buildings are more or less equivalent to each other and in which there are no very strong pa
li
 
 
V. Discussion 
V.1 What Generality is Claimed for DPG 
We have generalized the Douglas and Peucker algorithm to objects
limits as to the kind of test performed and as to the distance used. 
Test. The test is performed only on Distance. It could also be performed on the quantity of objects selected, compared 
to a desired selection ratio. The meaning of the selection would be altered; it would no longer be a selection on 
ground occupation and extension, but would integrate the idea of numeral quantity. 
Distance. The component Figure to Approximation of the Hausdorff distance is used. The full Hausdorff distance 
could be used, but computation time would be doubled for very limited advantages – as shown in the statistical 
studies of (Abbas-Hottier 1993), the other component, Approximation to Figure (Generalization to Original, in their 
terminology) is usually shorter than the reverse, and the component Figure to Approximation statistically is the 



Hausdorff distance between the two. Instead of Hausdorff, any other mathematical distance can conceivably be used, 
yet maybe without conveying the sense of remoteness that fits so well with the distance test performed. 
 
V.2 Fields Open for Research 
On mixed data. We will have to compare the result of the algorithm on a Figure of buildings and streets, and the 
results of the algorithm performed separately on the buildings on the one hand and on the streets on the other hand. 
Splitting. For the moment, results have been produced using the quite simple SPLITSPRIME function - we will have 
to design and compare different methods for splitting objects and for constructing relevant approximations, methods 
which are bound to be specific to the geometry, but certainly also to the geographical nature, of the objects involved. 
Tuning the threshold. How the “best” threshold may be systematically related to scale and purpose must be 
investigated, both mathematically and perceptively. 
DPG as analysis tool. For quality cartography, the full potential of DPG is not claimed to lie in its raw generalization 
powers, but as the service it may bring in evaluating not only the presence but the extension too of cartographic 
matter within the plane, to guide more specific local transformation operators. It is more an upstream analysis tool 
than a self-sufficing transformation tool, and applications are not limited indeed to automated map-drawing. For 
example, for geographic data matching, the separate application of the DPG on the different datasets may provide 
information on the “matchability” of the features of these sets. Also when the two datasets are of different resolutions, 
the separate application of DPG can help us to define what kind of conceptual generalization operation may be said to 
be involved (typification, aggregation, regular selection,…). 
 
 
VI. Conclusion 
In his “Theory of the Cartographic Line”, Thomas K. Peucker expressed his hopes that “others (would) pick up the 
idea and expand it as part of a growing body of cartographic theory” (Peucker 1976: 142). Starting, not from the line 
theory he proposed, but from the innermost characteristics of the algorithm he had designed a few years earlier, this 
paper has illustrated the fact that the reasons for the success of the Douglas & Peucker algorithm may not rest 
specifically on the nature of the line but on the nature of whatever things in configuration, and the algorithm elicits 
the configuration quite similarly as we human would see it: first the widest-spanning features, then within this span 
the second-widest-spanning features and so on… That Voronoi diagrams have been found on the way, even if 
apparently discreetly at the heart of Hausdorff (section III.2) is certainly no coincidence – but a full Voronoi-based 
spatial theory is still to be constructed… 
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